Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Sci Rep ; 13(1): 7306, 2023 05 05.
Artículo en Inglés | MEDLINE | ID: covidwho-2317602

RESUMEN

The rapid spread of the SARS-CoV-2 Variant of Concern (VOC) Gamma in Amazonas during early 2021 fueled a second large COVID-19 epidemic wave and raised concern about the potential role of reinfections. Very few cases of reinfection associated with the VOC Gamma have been reported to date, and their potential impact on clinical, immunological, and virological parameters remains largely unexplored. Here we describe 25 cases of SARS-CoV-2 reinfection in Brazil. SARS-CoV-2 genomic analysis confirmed that individuals were primo-infected with distinct viral lineages between March and December 2020 (B.1.1, B.1.1.28, B.1.1.33, B.1.195, and P.2) and reinfected with the VOC Gamma between 3 to 12 months after primo-infection. We found a similar mean cycle threshold (Ct) value and limited intra-host viral diversity in both primo-infection and reinfection samples. Sera of 14 patients tested 10-75 days after reinfection displayed detectable neutralizing antibodies (NAb) titers against SARS-CoV-2 variants that circulated before (B.1.*), during (Gamma), and after (Delta and Omicron) the second epidemic wave in Brazil. All individuals had milder or no symptoms after reinfection, and none required hospitalization. These findings demonstrate that individuals reinfected with the VOC Gamma may display relatively high RNA viral loads at the upper respiratory tract after reinfection, thus contributing to onward viral transmissions. Despite this, our study points to a low overall risk of severe Gamma reinfections, supporting that the abrupt increase in hospital admissions and deaths observed in Amazonas and other Brazilian states during the Gamma wave was mostly driven by primary infections. Our findings also indicate that most individuals analyzed developed a high anti-SARS-CoV-2 NAb response after reinfection that may provide some protection against reinfection or disease by different SARS-CoV-2 variants.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiología , COVID-19/epidemiología , Diversidad de Anticuerpos , Rayos gamma , Reinfección , Gravedad del Paciente
2.
iScience ; 25(4): 104156, 2022 Apr 15.
Artículo en Inglés | MEDLINE | ID: covidwho-1757444

RESUMEN

The COVID-19 epidemic in Brazil experienced two major lineage replacements until mid-2021. The first was driven by lineage P.2, in late 2020, and the second by lineage Gamma, in early 2021. To understand how these SARS-CoV-2 lineages spread in Brazil, we analyzed 11,724 genomes collected throughout the country between September 2020 and April 2021. Our findings indicate that lineage P.2 probably emerged in July 2020 in the Rio de Janeiro state and Gamma in November 2020 in the Amazonas state. Both states were the main hubs of viral disseminations to other Brazilian locations. We estimate that Gamma was 1.56-3.06 times more transmissible than P.2 in Rio de Janeiro and that the median effective reproductive number (Re) of Gamma varied according to the geographic context (Re = 1.59-3.55). In summary, our findings support that lineage Gamma was more transmissible and spread faster than P.2 in Brazil.

3.
Microb Genom ; 8(3)2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1746155

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has infected almost 200 million people worldwide by July 2021 and the pandemic has been characterized by infection waves of viral lineages showing distinct fitness profiles. The simultaneous infection of a single individual by two distinct SARS-CoV-2 lineages may impact COVID-19 disease progression and provides a window of opportunity for viral recombination and the emergence of new lineages with differential phenotype. Several hundred SARS-CoV-2 lineages are currently well phylogenetically defined, but two main factors have precluded major coinfection/codetection and recombination analysis thus far: (i) the low diversity of SARS-CoV-2 lineages during the first year of the pandemic, which limited the identification of lineage defining mutations necessary to distinguish coinfecting/recombining viral lineages; and the (ii) limited availability of raw sequencing data where abundance and distribution of intrasample/intrahost variability can be accessed. Here, we assembled a large sequencing dataset from Brazilian samples covering a period of 18 May 2020 to 30 April 2021 and probed it for unexpected patterns of high intrasample/intrahost variability. This approach enabled us to detect nine cases of SARS-CoV-2 coinfection with well characterized lineage-defining mutations, representing 0.61 % of all samples investigated. In addition, we matched these SARS-CoV-2 coinfections with spatio-temporal epidemiological data confirming its plausibility with the cocirculating lineages at the timeframe investigated. Our data suggests that coinfection with distinct SARS-CoV-2 lineages is a rare phenomenon, although it is certainly a lower bound estimate considering the difficulty to detect coinfections with very similar SARS-CoV-2 lineages and the low number of samples sequenced from the total number of infections.


Asunto(s)
COVID-19/virología , Coinfección/virología , SARS-CoV-2/genética , Sobreinfección/virología , Brasil , Genoma Viral , Humanos , Mutación , Filogenia , Polimorfismo de Nucleótido Simple
4.
Virus Evol ; 7(2): veab091, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: covidwho-1713740

RESUMEN

One of the most remarkable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) features is the significant number of mutations they acquired. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we describe a new SARS-CoV-2 P.1 sub-lineage circulating in Brazil, denoted here as Gamma-like-II, that as well as the previously described lineage Gamma-like-I shares several lineage-defining mutations with the VOC Gamma. Reconstructions of ancestor sequences support that most lineage-defining mutations of the Spike (S) protein, including those at the receptor-binding domain (RBD), accumulated at the first P.1 ancestor. In contrast, mutations outside the S protein were mostly fixed at subsequent steps. Our evolutionary analyses estimate that P.1-ancestral strains carrying RBD mutations of concern probably circulated cryptically in the Amazonas for several months before the emergence of the VOC Gamma. Unlike the VOC Gamma, the other P.1 sub-lineages displayed a much more restricted dissemination and accounted for a low fraction (<2 per cent) of SARS-CoV-2 infections in Brazil in 2021. The stepwise diversification of lineage P.1 through multiple inter-host transmissions is consistent with the hypothesis that partial immunity acquired from natural SARS-CoV-2 infections in heavily affected regions might have been a major driving force behind the natural selection of some VOCs. The lag time between the emergence of the P.1 ancestor and the expansion of the VOC Gamma and the divergent epidemic trajectories of P.1 sub-lineages support a complex interplay between the emergence of mutations of concern and viral spread in Brazil.

5.
Viruses ; 14(2)2022 01 23.
Artículo en Inglés | MEDLINE | ID: covidwho-1651072

RESUMEN

The COVID-19 pandemic is driven by Severe Acute Respiratory Syndrome coronavirus 2 (SARS-CoV-2) that emerged in 2019 and quickly spread worldwide. Genomic surveillance has become the gold standard methodology used to monitor and study this fast-spreading virus and its constantly emerging lineages. The current deluge of SARS-CoV-2 genomic data generated worldwide has put additional pressure on the urgent need for streamlined bioinformatics workflows. Here, we describe a workflow developed by our group to process and analyze large-scale SARS-CoV-2 Illumina amplicon sequencing data. This workflow automates all steps of SARS-CoV-2 reference-based genomic analysis: data processing, genome assembly, PANGO lineage assignment, mutation analysis and the screening of intrahost variants. The pipeline is capable of processing a batch of around 100 samples in less than half an hour on a personal laptop or in less than five minutes on a server with 50 threads. The workflow presented here is available through Docker or Singularity images, allowing for implementation on laptops for small-scale analyses or on high processing capacity servers or clusters. Moreover, the low requirements for memory and CPU cores and the standardized results provided by ViralFlow highlight it as a versatile tool for SARS-CoV-2 genomic analysis.


Asunto(s)
Automatización de Laboratorios/métodos , Genoma Viral , Mutación , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Flujo de Trabajo , Biología Computacional/instrumentación , Biología Computacional/métodos , Genómica/instrumentación , Genómica/métodos , Humanos , Filogenia , Glicoproteína de la Espiga del Coronavirus/genética , Ensamble de Virus/genética
6.
Virus evolution ; 7(2), 2021.
Artículo en Inglés | EuropePMC | ID: covidwho-1624105

RESUMEN

One of the most remarkable severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOC) features is the significant number of mutations they acquired. However, the specific factors that drove the emergence of such variants since the second half of 2020 are not fully resolved. In this study, we describe a new SARS-CoV-2 P.1 sub-lineage circulating in Brazil, denoted here as Gamma-like-II, that as well as the previously described lineage Gamma-like-I shares several lineage-defining mutations with the VOC Gamma. Reconstructions of ancestor sequences support that most lineage-defining mutations of the Spike (S) protein, including those at the receptor-binding domain (RBD), accumulated at the first P.1 ancestor. In contrast, mutations outside the S protein were mostly fixed at subsequent steps. Our evolutionary analyses estimate that P.1-ancestral strains carrying RBD mutations of concern probably circulated cryptically in the Amazonas for several months before the emergence of the VOC Gamma. Unlike the VOC Gamma, the other P.1 sub-lineages displayed a much more restricted dissemination and accounted for a low fraction (<2 per cent) of SARS-CoV-2 infections in Brazil in 2021. The stepwise diversification of lineage P.1 through multiple inter-host transmissions is consistent with the hypothesis that partial immunity acquired from natural SARS-CoV-2 infections in heavily affected regions might have been a major driving force behind the natural selection of some VOCs. The lag time between the emergence of the P.1 ancestor and the expansion of the VOC Gamma and the divergent epidemic trajectories of P.1 sub-lineages support a complex interplay between the emergence of mutations of concern and viral spread in Brazil.

7.
Virus Evol ; 7(2): veab069, 2021.
Artículo en Inglés | MEDLINE | ID: covidwho-1416152

RESUMEN

Mutations at both the receptor-binding domain (RBD) and the amino (N)-terminal domain (NTD) of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Spike (S) glycoprotein can alter its antigenicity and promote immune escape. We identified that SARS-CoV-2 lineages circulating in Brazil with mutations of concern in the RBD independently acquired convergent deletions and insertions in the NTD of the S protein, which altered the NTD antigenic-supersite and other predicted epitopes at this region. Importantly, we detected the community transmission of different P.1 lineages bearing NTD indels ∆69-70 (which can impact several SARS-CoV-2 diagnostic protocols), ∆144 and ins214ANRN, and a new VOI N.10 derived from the B.1.1.33 lineage carrying three NTD deletions (∆141-144, ∆211, and ∆256-258). These findings support that the ongoing widespread transmission of SARS-CoV-2 in Brazil generates new viral lineages that might be more resistant to antibody neutralization than parental variants of concern.

8.
Nat Med ; 27(7): 1230-1238, 2021 07.
Artículo en Inglés | MEDLINE | ID: covidwho-1243306

RESUMEN

The northern state of Amazonas is among the regions in Brazil most heavily affected by the COVID-19 epidemic and has experienced two exponentially growing waves, in early and late 2020. Through a genomic epidemiology study based on 250 severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) genomes from different Amazonas municipalities sampled between March 2020 and January 2021, we reveal that the first exponential growth phase was driven mostly by the dissemination of lineage B.1.195, which was gradually replaced by lineage B.1.1.28 between May and June 2020. The second wave coincides with the emergence of the variant of concern (VOC) P.1, which evolved from a local B.1.1.28 clade in late November 2020 and replaced the parental lineage in <2 months. Our findings support the conclusion that successive lineage replacements in Amazonas were driven by a complex combination of variable levels of social distancing measures and the emergence of a more transmissible VOC P.1 virus. These data provide insights to understanding the mechanisms underlying the COVID-19 epidemic waves and the risk of dissemination of SARS-CoV-2 VOC P.1 in Brazil and, potentially, worldwide.


Asunto(s)
COVID-19/epidemiología , COVID-19/virología , Genoma Viral/genética , SARS-CoV-2/genética , Adulto , Brasil/epidemiología , Prueba de Ácido Nucleico para COVID-19 , Femenino , Humanos , Masculino , Persona de Mediana Edad , Epidemiología Molecular , Filogenia , Filogeografía , Análisis Espacio-Temporal
9.
Viruses ; 12(12)2020 12 09.
Artículo en Inglés | MEDLINE | ID: covidwho-968574

RESUMEN

Multiple epicenters of the SARS-CoV-2 pandemic have emerged since the first pneumonia cases in Wuhan, China, such as Italy, USA, and Brazil. Brazil is the third-most affected country worldwide, but genomic sequences of SARS-CoV-2 strains are mostly restricted to states from the Southeast region. Pernambuco state, located in the Northeast region, is the sixth most affected Brazilian state, but very few genomic sequences from the strains circulating in this region are available. We sequenced 101 strains of SARS-CoV-2 from patients presenting Covid-19 symptoms that reside in Pernambuco. Phylogenetic reconstructions revealed that all genomes belong to the B lineage and most of the samples (88%) were classified as lineage B.1.1. We detected multiple viral introductions from abroad (likely from Europe) as well as six local B.1.1 clades composed by Pernambuco only strains. Local clades comprise sequences from the capital city (Recife) and other country-side cities, corroborating the community spread between different municipalities of the state. These findings demonstrate that different from Southeastern Brazilian states where the epidemics were majorly driven by one dominant lineage (B.1.1.28 or B.1.1.33), the early epidemic phase at the Pernambuco state was driven by multiple B.1.1 lineages seeded through both national and international traveling.


Asunto(s)
COVID-19/epidemiología , COVID-19/transmisión , Genoma Viral , Filogenia , SARS-CoV-2/genética , Brasil/epidemiología , Ciudades/epidemiología , Evolución Molecular , Genómica , Humanos , Estudios Longitudinales , Mutación , Nasofaringe/virología , Orofaringe/virología , SARS-CoV-2/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA